Star-PAP is a noncanonical poly(A) polymerase that controls gene expression. Star-PAP was previously reported to bind the phosphatidylinositol 4-phosphate 5-kinase PIPKI⍺ and its product phosphatidylinositol 4,5-bisphosphate, which regulate Star-PAP poly(A) polymerase activity and expression of specific genes. Recent studies have revealed a nuclear PI signaling pathway in which the PI transfer proteins PITP⍺/β, PI kinases and phosphatases bind p53 to sequentially modify protein-linked phosphatidylinositol phosphates and regulate its function. Here we demonstrate that multiple phosphoinositides, including phosphatidylinositol 4-monophosphate and phosphatidylinositol 3,4,5-trisphosphate are also coupled to Star-PAP in response to stress. This is initiated by PITP⍺/β binding to Star-PAP, while the Star-PAP-linked phosphoinositides are modified by PI4KII⍺, PIPKI⍺, IPMK, and PTEN recruited to Star- PAP. The phosphoinositide coupling enhances the association of the small heat shock proteins HSP27/⍺B-crystallin with Star-PAP. Knockdown of the PITPs, kinases, or HSP27 reduce the expression of Star-PAP targets. Our results demonstrate that the PITPs generate Star-PAP-PIPn complexes that are then modified by PI kinases/phosphatases and small heat shock proteins that regulate the linked phosphoinositide phosphorylation and Star-PAP activity in response to stress.