Background
The aim of this study was to develop a radiomics machine learning model based on computed tomography (CT) that can predict whether thymic epithelial tumors (TETs) can be separated from veins during surgery and to compare the accuracy of the radiomics model to that of radiologists.
Methods
Patients who underwent thymectomy at our hospital from 2009 to 2017 were included in the screening process. After the selection of patients according to the inclusion and exclusion criteria, the cohort was randomly divided into training and testing groups, and CT images of these patients were collected. Subsequently, two-dimensional (2D) and three-dimensional (3D) regions of interest were labelled using ITK-SNAP 3.8.0 software, and Radiomics features were extracted using Python software (Python Software Foundation) and selected through the least absolute shrinkage and selection operator (LASSO) regression model. To construct the classifier, a support vector machine (SVM) was employed, and a nomogram was created using logistic regression to predict vascular inseparable TETs based on the radiomics score (radscore) and image features. To assess the accuracy of these models, area under receiver operating characteristic (ROC) curves of these models were calculated, and differences among the models were identified using the Delong test.
Results
In this retrospective study, 204 patients with TETs were included, among whom 21 were diagnosed with surgical vascularly inseparable TETs. The area under ROC curve (AUC) of the 2D model, 3D model, 2D + 3D model, and radiologist diagnoses were 0.94, 0.92, 0.95, and 0.87 in the training cohort and 0.95, 0.92, 0.98, and 0.78 in testing cohort, respectively. The Delong test revealed a significant improvement in the performance of the radiomics models compared to radiologists’ diagnoses. The logistic regression selected 3 image features, namely maximum diameter of the tumor, degree of abutment of vessel circumference >50%, and absence of the mediastinal fat layer or space between the tumor and surrounding structures. These features, along with the radscore, were included to develop a nomogram. The AUCs of this nomogram were 0.99 in both the training set and testing set, and the Delong test did not find a significant difference between ROC plots of the nomogram and radiomics models.
Conclusions
The proposed radiomics model could accurately predict surgical vascularly inseparable TETs preoperatively and was shown to have a higher predictive value than the radiologists.