The canine elbow joint is a complex joint, whose musculoskeletal anatomy is well investigated. During the last 30 years kinematic analysis has gained importance in veterinary research and kinematics of the healthy and medial coronoid disease affected canine elbow joint are progressively investigated. Video-kinematographic analysis represents the most commonly used technique and multiple studies have investigated the range of motion, angular velocity, duration of swing and stance phase, stride length and other kinematic parameters, mostly in the sagittal plane only. However, this technique is more error-prone and data gained by video-kinematography represent the kinematics of the whole limb including the soft tissue envelope. A more precise evaluation of the in vivo bone and joint movement can only been achieved using fluoroscopic kinematography. Based on recent studies significant differences in the motion pattern between healthy joints and elbows with medial coronoid disease could be detected. Thereby not only adaptive changes, caused by pain and lameness, could be described, but primary changes in the micromotion of the joint forming bones could be found, which potentially represent new factors in the pathogenesis of medial coronoid disease. This chapter gives a review of current literature on elbow joint kinematics, with particular focus onto pathologic biomechanics in dysplastic canine elbows.