To determine the feasibility of ultra-low-dose (ULD) CT fluoroscopy for performing percutaneous CT-guided interventions in an in vivo porcine model and to compare radiation dose, spatial accuracy, and metal artifact for conventional CT versus CT fluoroscopy. Materials and Methods: An in vivo swine model was used (n = 4, ~50 kg) for 20 procedures guided by 246 incremental conventional CT scans (mean, 12.5 scans per procedure). The procedures were approved by the Institutional Animal Care and Use Committee and performed by two experienced radiologists from September 7, 2017, to August 8, 2018. ULD CT fluoroscopic acquisitions were simulated by using only two of 984 conventional CT projections to locate and reconstruct the needle, which was superimposed on a previously acquired and motion-compensated CT scan. The authors (medical physicists) compared the ULD CT fluoroscopy results to those of conventional CT for needle location, radiation dose, and metal artifacts using Deming regression and generalized mixed models. Results: The average distance between the needle tip reconstructed using conventional CT and ULD CT fluoroscopy was 1.06 mm. Compared with CT fluoroscopy, the estimated dose for a percutaneous procedure, including planning acquisitions, was 0.99 mSv (21% reduction) for patients (effective dose) and 0.015 µGy (97% reduction) for physicians (scattered dose in air). Metal artifacts were statistically significantly reduced (P , .001, bootstrapping), and the average registration error of the motion compensation was within 1-3 mm. Conclusion: Ultra-low-dose CT fluoroscopy has the potential to reduce radiation exposure for intraprocedural scans to patients and staff by a factor of approximately 500 times compared with conventional CT acquisition, while maintaining image quality without metal artifacts.