Background
To validate a contrast-enhanced CT (CECT)-based radiomics model (RM) for differentiating various risk subgroups of thymic epithelial tumors (TETs).
Methods
A retrospective study was performed on 164 patients with TETs who underwent CECT scans before treatment. A total of 130 patients (approximately 79%, from 2012 to 2018) were designated as the training set, and 34 patients (approximately 21%, from 2019 to 2021) were designated as the testing set. The analysis of variance and least absolute shrinkage and selection operator algorithm methods were used to select the radiomics features. A logistic regression classifier was constructed to identify various subgroups of TETs. The predictive performance of RMs was evaluated based on receiver operating characteristic (ROC) curve analyses.
Results
Two RMs included 16 and 13 radiomics features to identify three risk subgroups of traditional risk grouping [low-risk thymomas (LRT: Types A, AB and B1), high-risk thymomas (HRT: Types B2 and B3), thymic carcinoma (TC)] and improved risk grouping [LRT* (Types A and AB), HRT* (Types B1, B2 and B3), TC], respectively. For traditional risk grouping, the areas under the ROC curves (AUCs) of LRT, HRT, and TC were 0.795, 0.851, and 0.860, respectively, the accuracy was 0.65 in the training set, the AUCs were 0.621, 0.754, and 0.500, respectively, and the accuracy was 0.47 in the testing set. For improved risk grouping, the AUCs of LRT*, HRT*, and TC were 0.855, 0.862, and 0.869, respectively, and the accuracy was 0.72 in the training set; the AUCs were 0.778, 0.716, and 0.879, respectively, and the accuracy was 0.62 in the testing set.
Conclusions
CECT-based RMs help to differentiate three risk subgroups of TETs, and RM established according to improved risk grouping performed better than traditional risk grouping.