2020
DOI: 10.21203/rs.3.rs-96694/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

CT Metal Artifact Reduction based on Virtual Generated Artifacts Using Modified pix2pix

Abstract: Background: Metal artifacts introduce challenges in image-guided diagnosis or accurate dose calculations. This study aims to reduce metal artifacts from the spinal brace by using virtual generated artifacts through convolutional neural networks and to compare the performance of this approach with two other methods, namely, linear interpolation metal artifact reduction (LIMAR) and normalized metal artifact reduction (NMAR) .Method: A total of 3,600-slice CT images of 60 vertebral metastases patients were select… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 24 publications
0
0
0
Order By: Relevance