Background: Malformations of the temporal bone present different challenges to the implantation of a transcutaneous active bone conduction device, such as Bonebridge (Med-el, Innsbruck, Austria). This study aims to describe the benefits of high-resolution computed tomography (HRCT) in preoperative assessment and to analyze whether characteristics of the mastoid process, intraoperative compression of the dura or sigmoid sinus, and the use of the Lifts system, lead to differences in audiological performance after implantation. Methods: We examined 110 cases of congenital microtia. The structure of the temporal bone was examined using HRCT and a 3D simulation software program. The mean anteroposterior mastoid bone thickness from the external auditory canal to the sigmoid sinus was measured (a measurement referred to as "AP", hereafter). Sound field threshold (SFT), speech reception threshold (SRT) in noise, and word recognition score (WRS) in quiet, before and after implantation, were also measured. Independent variables were recorded in all patients: mastoid type (well pneumatized or poorly pneumatized), the presence of dural or sigmoid sinus compression, and the use of the Lifts system. Results: We found that the mean AP in the non-compression group was 16.2 ± 2.3 mm and in the compression group, 13.1 ± 2.9 mm (p < 0.001). We analyzed the hearing improvement of patients grouped by mastoid development, dural or sigmoid sinus compression, and use of the Lifts system, and found that these factors did not interact and that they had no influence on the hearing outcomes (p > 0.05).