Many studies have shown a statistically significant increase of life-time risk of radiation-induced cancer from CT examinations. In this context, in Canada, the Quebec's provincial clinical center of expertise in radiation safety (CECR) has led a province-wide tour of 180 CT installations in order to: (i) evaluate the technical and functional performance of CT scanners, (ii) evaluate and improve radiation safety practices and (iii) initiate, with local teams, a CT dose optimization process. The CT tour consisted of a two day visit of CT installations by a CECR multidisciplinary team of medical physicists, engineers and medical imaging technologists (MITs) carried out in close collaboration with local teams composed of MITs, radiologists, physicists, engineers and managers. The CECR has evaluated 112 CT scanners since 2011. Optimization of CT protocols was performed in all centers visited. The average dose reduction obtained from optimization was [Formula: see text], [Formula: see text] and [Formula: see text] for adult head, thorax and abdomen-pelvis, respectively. The main recommendations often made by the CECR experts were: (1) the implementation of low-dose protocols for the follow-up of pulmonary nodules and for renal calculi, (2) the compliance to the prescribed scan range as defined by local guidelines, (3) the correct positioning of patients and (4) the use of bismuth shielding to reduce the dose to radiosensitive organs. The CECR approach to optimize CT doses to patients is based on the active participation of local stakeholders and takes into account the performance of CT scanners. The clinical requirements as expressed by radiologists remain at the core of the optimization process.