BACKGROUND: Chest CT may be used for the diagnosis of coronavirus disease 2019 (COVID-19), but clear scientific evidence is lacking. Therefore, we systematically reviewed and metaanalyzed the chest CT imaging signature of COVID-19. RESEARCH QUESTION: What is the chest CT imaging signature of COVID-19 infection? STUDY DESIGN AND METHODS: A systematic literature search was performed for original studies on chest CT imaging findings in patients with COVID-19. Methodologic quality of studies was evaluated. Pooled prevalence of chest CT imaging findings were calculated with the use of a random effects model in case of between-study heterogeneity (predefined as I 2 $50); otherwise, a fixed effects model was used. RESULTS: Twenty-eight studies were included. The median number of patients with COVID-19 per study was 124 (range, 50-476), comprising a total of 3,466 patients. Median prevalence of symptomatic patients was 99% (range, >76.3%-100%). Twenty-seven of the studies (96%) had a retrospective design. Methodologic quality concerns were present with either risk of or actual referral bias (13 studies), patient spectrum bias (eight studies), disease progression bias (26 studies), observer variability bias (27 studies), and test review bias (14 studies). Pooled prevalence was 10.6% for normal chest CT imaging findings. Pooled prevalences were 90.0% for posterior predilection, 81.0% for ground-glass opacity, 75.8% for bilateral abnormalities, 73.1% for left lower lobe involvement, 72.9% for vascular thickening, and 72.2% for right lower lobe involvement. Pooled prevalences were 5.2% for pleural effusion, 5.1% for lymphadenopathy, 4.1% for airway secretions/tree-in-bud sign, 3.6% for central lesion distribution, 2.7% for pericardial effusion, and 0.7% for cavitation/ cystic changes. Pooled prevalences of other CT imaging findings ranged between 10.5% and 63.2%.