Metallic nanoclusters (MNCs) were developed rapidly in recent decades, owing to their unique electronic structures and excited state characteristics, leading to their wide applications. Luminescence as one of the most important functions for MNCs has also been used to realize biodetection, displays, and lighting, through either electrochemiluminescence (ECL) or electroluminescence (EL). Both emissive properties and electrochemical activities of MNCs were utilized to enhance ECL and EL through facilitating exciton formation and radiation, rendering the rapid emerging of the latter in the last ten years. Through ligand modification, radiative excited-state components were increased to realize state-of-the-art photo-and electroluminescence efficiencies up to ∼100% and ∼30%, as well as ultralow biodetection limits. Nonetheless, material selection space and processing technologies are still limited. Herein, we overview and discuss recent advances of MNCs-based ECL and EL, through both aspects of materials/systems and devices, which would enlighten continuous innovations in optoelectronic MNCs.