We study isoperimetric sets, i.e., sets with minimal boundary for a prescribed volume, on the unique infinite connected component of supercritical bond percolation on the square lattice. In the limit of the volume tending to infinity, properly scaled isoperimetric sets are shown to converge (in the Hausdorff metric) to the solution of an isoperimetric problem in R 2 with respect to a particular norm. As part of the proof we also show that the anchored isoperimetric profile as well as the Cheeger constant of the giant component in finite boxes scale to deterministic quantities. This settles a conjecture of Itai Benjamini for the square lattice.