We prove that for a non-amenable, locally finite, connected, transitive, planar graph with one end, any automorphism invariant site percolation on the graph does not have exactly 1 infinite 1-cluster and exactly 1 infinite 0-cluster a.s. If we further assume that the site percolation is insertion-tolerant and a.s. there exists a unique infinite 0cluster, then a.s. there are no infinite 1-clusters. The proof is based on the analysis of a class of delicately constructed interfaces between clusters and contours. Applied to the case of i.i.d. Bernoulli site percolation on infinite, connected, locally finite, transitive, planar graphs, these results solve two conjectures of Benjamini and Schramm (Conjectures 7 and 8 in [4]) in 1996.