Abstract.This paper explores the representation of quantum computing in terms of unitary reflections (unitary transformations that leave invariant a hyperplane of a vector space). The symmetries of qubit systems are found to be supported by Euclidean real reflections (i.e., Coxeter groups) or by specific imprimitive reflection groups, introduced (but not named) in a recent paper [Planat M and Jorrand Ph 2008, J Phys A: Math Theor 41, 182001]. The automorphisms of multiple qubit systems are found to relate to some Clifford operations once the corresponding group of reflections is identified. For a short list, one may point out the Coxeter systems of type B 3 and G 2 (for single qubits), D 5 and A 4 (for two qubits), E 7 and E 6 (for three qubits), the complex reflection groups G(2 l , 2, 5) and groups No 9 and 31 in the Shephard-Todd list. The relevant fault tolerant subsets of the Clifford groups (the Bell groups) are generated by the Hadamard gate, the π/4 phase gate and an entangling (braid) gate [Kauffman L H and Lomonaco S J 2004 New J. of Phys. 6, 134]. Links to the topological view of quantum computing, the lattice approach and the geometry of smooth cubic surfaces are discussed.