Abstract:In this article, the copper-chromium-zirconium (CuCrZr) alloys plates with 21 mm in thickness were butt joined together by means of FSW (friction stir welding). The properties of the FSW joints are studied. The microstructure variations during the process of FSW were investigated by optical microscopy (OM), electron back-scattered diffraction (EBSD), and transmission electron microscopy (TEM). The results show that the grains size in the nugget zone (NZ) are significantly refined, which can be attributed to the dynamic recrystallization (DRX). The microstructure distribution in the NZ is inhomogeneous and the size of equiaxed grains are decreased gradually along the thickness direction from the top to bottom area of the welds. Meanwhile, it is found that the micro-hardness and tensile strength of the welds are slightly increased along the thickness direction from the top to the bottom area of the welds. All the nano-strengthening precipitates in the BM are dissolved into the Cu matrix in the NZ. Therefore, the decreases in hardness, tensile strength, and electrical conductivity can be attributed to the comprehensive effect of dissolution of nano-strengthening precipitates into the supersaturation matrix and severe DRX in the welded NZ.