TRIM11 has been reported to be able to restrict HIV-1 replication, but the detailed aspects of the interfering mechanisms remain unclear. In this study, we demonstrated that TRIM11 mainly suppressed the early steps of HIV-1 transduction, resulting in decreased reverse transcripts. Additionally, we found that TRIM11 could inhibit HIV-1 long terminal repeat (LTR) activity, which may be related to its inhibitory effects on NF-κB. Deletion mutant experiments showed that the RING domain of TRIM11 was indispensable in inhibiting the early steps of HIV-1 transduction but was dispensable in decreasing NF-κB and LTR activities. Moreover, we found that low levels of Vpr decreased TRIM11 protein levels, while high levels increased them, and these regulations were independent of the VprBP-associated proteasome machinery. These results suggest that the antiviral factor TRIM11 is indirectly regulated by HIV-1 Vpr through unknown mechanisms and that the concentration of Vpr is essential to these processes. Thus, our work confirms TRIM11 as a host cellular factor that interferes with the early steps of HIV-1 replication and provides a connection between viral protein and host antiviral factors.