The efficient management of nitrogen (N) on a site-specific basis is critical for the improvement of crop yield and the reduction of environmental impacts. This review examines the application of three primary technologies—canopy reflectance sensors, chlorophyll meters, and leaf color charts—in the context of site-specific N fertilizer management. It delves into the development and effectiveness of these tools in assessing and managing crop N status. Reflectance sensors, which measure the reflection of light at specific wavelengths, provide valuable data on plant N stress and variability. The advent of innovative sensor technology, exemplified by the GreenSeeker, Crop Circle sensors, and Yara N-Sensor, has facilitated real-time monitoring and precise adjustments in fertilizer N application. Chlorophyll meters, including the SPAD meter and the atLeaf meter, quantify chlorophyll content and thereby estimate leaf N levels. This indirect yet effective method of managing N fertilization is based on the principle that the concentration of chlorophyll in leaves is proportional to the N content. These meters have become an indispensable component of precision agriculture due to their accuracy and ease of use. Leaf color charts, while less sophisticated, offer a cost-effective and straightforward approach to visual N assessment, particularly in developing regions. This review synthesizes research on the implementation of these technologies, emphasizing their benefits, constraints, and practical implications. Additionally, it explores integration strategies for combining these tools to enhance N use efficiency and sustainability in agriculture. The review culminates with recommendations for future research and development to further refine the precision and efficacy of N management practices.