Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Identifying a microorganism in patients with native vertebral osteomyelitis presents diagnostic challenges. Microorganism identification through culture-based methods is constrained by prolonged processing times and sensitivity limitations. Despite the availability of molecular diagnostic techniques for identifying microorganisms in native vertebral osteomyelitis, there is considerable variability in reported sensitivity and specificity across studies, leading to uncertainty in their clinical utility. Questions/purposes What are the sensitivity, specificity, and diagnostic odds ratios for 16S broad-range PCR followed by Sanger sequencing (16S) and metagenomic next-generation sequencing (NGS) for detecting bacteria in native vertebral osteomyelitis? Methods On June 29, 2023, we searched Cochrane, Embase, Medline, and Scopus for results from January 1970 to June 2023. Included studies involved adult patients with suspected native vertebral osteomyelitis undergoing molecular diagnostics—16S bacterial broad-range PCR followed by Sanger sequencing and shotgun or targeted metagenomic NGS—for bacteria detection. Studies involving nonnative vertebral osteomyelitis and cases of brucellar, tubercular, or fungal etiology were excluded. The reference standard for the diagnosis of native vertebral osteomyelitis was a composite clinical- and investigator-defined native vertebral osteomyelitis diagnosis. Diagnostic performance was assessed using a bivariate random-effects model. Risk of bias and diagnostic applicability were evaluated using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. After a manual screening of 3403 studies, 10 studies (5 on 16S, 5 on NGS) were included in the present analysis, from which 391 patients were included from a total of 958 patients overall. Quality assessment via QUADAS-2 criteria showed moderate risk of bias and good applicability. Results 16S showed 78% (95% confidence interval [CI] 95% CI 31% to 96%) sensitivity and 94% (95% CI 73% to 99%) specificity, whereas NGS demonstrated 82% (95% CI 63% to 93%) sensitivity and 71% (95% CI 37% to 91%) specificity. In addition, the diagnostic ORs were 59 (95% CI 9 to 388) and 11 (95% CI 4 to 35) for 16S and NGS, respectively. Summary receiver operating characteristic curves showed high test performance for 16S (area under the curve for 16S 95% [95% CI 93% to 97%] and for NGS 89% [95% CI 86% to 92%]). Certainty in estimates was moderate because of sample size limitations. Conclusion This meta-analysis found moderate-to-high diagnostic performance of molecular methods on direct patient specimens for the diagnosis of native vertebral osteomyelitis. When used as a complementary test to microbiological analyses, a positive 16S result rules in the diagnosis of native vertebral osteomyelitis, while further studies are needed to understand the role of NGS in the diagnosis of native vertebral osteomyelitis. When available, these tests should be used in addition to conventional microbiology, especially in complex cases with extensively negative standard microbiological test results, to detect fastidious bacteria or to confirm the causative bacteria when their isolation and pathogenicity are unclear. A large sample size is needed in future research to understand the use of these techniques as standalone tests for diagnosis. Level of Evidence Level III, diagnostic study.
Background Identifying a microorganism in patients with native vertebral osteomyelitis presents diagnostic challenges. Microorganism identification through culture-based methods is constrained by prolonged processing times and sensitivity limitations. Despite the availability of molecular diagnostic techniques for identifying microorganisms in native vertebral osteomyelitis, there is considerable variability in reported sensitivity and specificity across studies, leading to uncertainty in their clinical utility. Questions/purposes What are the sensitivity, specificity, and diagnostic odds ratios for 16S broad-range PCR followed by Sanger sequencing (16S) and metagenomic next-generation sequencing (NGS) for detecting bacteria in native vertebral osteomyelitis? Methods On June 29, 2023, we searched Cochrane, Embase, Medline, and Scopus for results from January 1970 to June 2023. Included studies involved adult patients with suspected native vertebral osteomyelitis undergoing molecular diagnostics—16S bacterial broad-range PCR followed by Sanger sequencing and shotgun or targeted metagenomic NGS—for bacteria detection. Studies involving nonnative vertebral osteomyelitis and cases of brucellar, tubercular, or fungal etiology were excluded. The reference standard for the diagnosis of native vertebral osteomyelitis was a composite clinical- and investigator-defined native vertebral osteomyelitis diagnosis. Diagnostic performance was assessed using a bivariate random-effects model. Risk of bias and diagnostic applicability were evaluated using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. After a manual screening of 3403 studies, 10 studies (5 on 16S, 5 on NGS) were included in the present analysis, from which 391 patients were included from a total of 958 patients overall. Quality assessment via QUADAS-2 criteria showed moderate risk of bias and good applicability. Results 16S showed 78% (95% confidence interval [CI] 95% CI 31% to 96%) sensitivity and 94% (95% CI 73% to 99%) specificity, whereas NGS demonstrated 82% (95% CI 63% to 93%) sensitivity and 71% (95% CI 37% to 91%) specificity. In addition, the diagnostic ORs were 59 (95% CI 9 to 388) and 11 (95% CI 4 to 35) for 16S and NGS, respectively. Summary receiver operating characteristic curves showed high test performance for 16S (area under the curve for 16S 95% [95% CI 93% to 97%] and for NGS 89% [95% CI 86% to 92%]). Certainty in estimates was moderate because of sample size limitations. Conclusion This meta-analysis found moderate-to-high diagnostic performance of molecular methods on direct patient specimens for the diagnosis of native vertebral osteomyelitis. When used as a complementary test to microbiological analyses, a positive 16S result rules in the diagnosis of native vertebral osteomyelitis, while further studies are needed to understand the role of NGS in the diagnosis of native vertebral osteomyelitis. When available, these tests should be used in addition to conventional microbiology, especially in complex cases with extensively negative standard microbiological test results, to detect fastidious bacteria or to confirm the causative bacteria when their isolation and pathogenicity are unclear. A large sample size is needed in future research to understand the use of these techniques as standalone tests for diagnosis. Level of Evidence Level III, diagnostic study.
Background: Culture-negative vertebral osteomyelitis presents a significant diagnostic challenge. Neisseria sicca (N. sicca) is a typically benign commensal organism of the upper respiratory tract that rarely causes invasive infections, warranting cautious interpretation if isolated in a single positive culture. This case study details a 62-year-old male diagnosed with vertebral osteomyelitis caused by N. sicca, examining diagnostic challenges, treatment, and outcomes. Methods: We conducted a comprehensive search on MEDLINE using the keywords “Neisseria sicca”, “osteomyelitis”, and “diskitis”. An additional search excluding N. gonorrhea and N. meningitidis was also performed, revealing a total of four cases of N. sicca osteomyelitis in the literature. Results: A 62-year-old male with a history of hypertension, type 2 diabetes, atrial fibrillation, and previous L5-S1 spinal fusion presented with fever and back pain in May 2023. Initial imaging revealed T8-T9 vertebral osteomyelitis. Despite a six-week course of IV daptomycin, his symptoms worsened, prompting further evaluation. A CT-guided biopsy with comprehensive testing, including histopathology and microbial cultures, initially identified N. sicca. Due to its rarity, additional biopsies were conducted, confirming the infection. IV ceftriaxone was initiated, leading to significant pain improvement, and a subsequent MRI showed near resolution. The patient transitioned to oral cefuroxime, with follow-up confirming complete infection resolution by December 2023. Conclusions: This case underscores the importance of a structured diagnostic approach in culture-negative vertebral osteomyelitis to differentiate between commensal contamination and true infection. Repeated positive cultures of N. sicca from a sterile site confirmed its role as the causative agent. Early identification and targeted antibiotic therapy are critical to improving outcomes in rare cases of N. sicca vertebral osteomyelitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.