Rice husk is an agricultural biomass waste. Burning rice husks in an oxygenic atmosphere releases thermal energy and produces ash that is rich in silica. Rice husk ash (RHA) can be used as a sustainable source of silica for producing high-value-added products. In this study, mesostructural graphene oxide (GO)/SBA-15, a graphene-based hybrid material, was synthesized from RHA. The materials are inspected by Fourier transform infrared spectrometer, Raman spectrometer, field-emission scanning electron microscopy, transmission electron microscopy, surface area analyzer, and X-ray diffraction analyzer. Studies have revealed that GO/SBA-15 possesses various oxygen functional groups that are helpful for dye adsorption. The material consisted of high pore volume of 0.901 cm3/g, wide pores of diameter 11.67 nm, and high surface area of 499 m2/g. Analysis of the methylene blue (MB) adsorption behavior of GO/SBA-15 composites revealed that their adsorption capacity depended on the gelation pH, GO content, adsorbent dosage, and initial dye (MB) concentration. The highest adsorption capacity of GO/SBA-15 was 632.9 mg/g. Furthermore, the adsorption isotherms and kinetics of GO/SBA-15 were investigated. This study demonstrated the great advantage of treated RHA and the potential of this material for use in organic dye adsorption.