Cuproptosis is a novel type to regulate cell death with copper-dependent manner, and has been reported to involve in the occurrence and development of various malignant tumors. However, the association between cuproptosis and the tumor microenvironment (TME) of clear cell renal cell carcinoma (ccRCC) remained unclear. To address this question, we integrated the single cell RNA sequencing (scRNA-seq) datasets of ccRCC across different stages, systematically examined the distinctive expression patterns of cuproptosis-related genes (CRGs) within the TME of ccRCC, and explored the crucial signatures using the spatial transcriptome sequencing (ST-seq) dataset. The cuproptosis activities reduced in cancer tissues along with the ccRCC development, and recovered after therapy. We identified HILPDA+ ccRCC1 subtype, characterized with hypoxia, as cuproptosis susceptible cells associated with a better prognosis. The main co-expression modules of HILPDA+ ccRCC1 subtype highlighted the role in anion transport, response to oxygen species and PD-L1-PD-1 pathway. Furthermore, the immunosuppressive cells might interact with HILPDA+ ccRCC1 subtype via HAVCR2-LGALS9, C3-C3AR1, HLA-A-CD8B and HLA-C-CD8A axises to shape the cuproptosis-related TME landscape. In summary, we anticipate that this study will offer valuable insights and potential strategies of cuproptosis for therapy of ccRCC.
Graphical Abstract