ABSTRACT:The glass-transition temperature as a function of curing conversion for a modified diallylbisphenol A/diaminodiphenylsulfone/bismaleimide (BMI) resin was investigated at different temperature regimes and modeled using a modified Di Benedetto equation. Although the relationship between the glass-transition temperature and conversion of the BMI system conforms to the Di Benedetto equation for ␣ Ͻ 0.6 and at lower cure temperatures, at higher cure temperatures the results deviated significantly from the equation; thus, it was an inadequate model for the system. Fourier transform IR analysis showed that the major crosslinking reactions did not occur during cure for the modified BMI at and below 150°C. However, as the cure temperature was increased, the crosslinking reactions responsible for 3-dimensional network structures became more dominant. At 190°C the CONOC stretch vibration of the uncured maleimide ring converted into succinimide rings in the curing process. Simultaneously, a decrease was observed for the absorbance bands of ACOH bending (maleimide). The higher cure temperatures induced a significantly faster initial crosslinking rate and also resulted in a shorter period of time after which further crosslinking was retarded, because the increase in the crosslinks also physically slowed further crosslinking activity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: [227][228][229][230][231][232][233][234][235] 2002