“…Hence, the development of CRISPR/Cas9 allowed for the rapid expansion of genome engineering into basic research ( Giersch and Finnigan, 2017 ; Thompson et al, 2021 ) as well as industrial biotechnology and synthetic biology ( Stovicek et al, 2015 ; Raschmanová et al, 2018 ; Mitsui et al, 2019 ; Zhang S. et al, 2020 ; Ding et al, 2020 ; Malcı et al, 2020 ; Meng et al, 2020 ; Molina-Espeja, 2020 ; Parapouli et al, 2020 ; Rainha et al, 2020 ; Patra et al, 2021 ). Some important applications of CRISPR/Cas9 genome editing applications in S. cerevisiae involve the production of biopharmaceuticals, biocatalysts, food additives, chemicals, and biofuels ( Hong and Nielsen, 2012 ; Mattanovich et al, 2014 ; Auxillos et al, 2019 ; Mitsui et al, 2019 ; Kim et al, 2020 ; Lacerda et al, 2020 ; Molina-Espeja, 2020 ; Parapouli et al, 2020 ; Utomo et al, 2021 ). Moreover, the expanding CRISPR/Cas toolkit, which includes base editing ( Eid et al, 2018 ; Rees and Liu, 2018 ; Yang et al, 2019 ; Anzalone et al, 2020 ), gene repression and activation ( Gilbert et al, 2013 ; Qi et al, 2013 ; Didovyk et al, 2016 ; Dominguez et al, 2016 ; Brezgin et al, 2019 ; Pickar-Oliver and Gersbach, 2019 ; Xu and Qi, 2019 ; Shakirova et al, 2020 ) as well as alternative Cas proteins and Cas9 variants ( Bao et al, 2015 ; Nakade et al, 2017 ; Yan et al, 2019 ; Paul and Montoya, 2020 ; Thompson et al, 2021 ) have begun to greatly expand what can be accomplished with CRISPR/Cas systems in eukaryotic fungi.…”