Systemic sclerosis (SSc, scleroderma) is a severe autoimmune connective tissue disease characterized by widespread peripheral microvasculopathy, and progressive cutaneous and visceral fibrosis, leading to significant organ dysfunction. Sirtuins (SIRTs) are a family of NAD-dependent protein deacetylases with pleiotropic effects on a variety of biological processes, including metabolism, cell survival, and aging. In the last decades, increasing studies have explored the contribution of SIRTs to the pathogenesis of SSc, highlighting a significant antifibrotic effect of both SIRT1 and SIRT3. On these bases, the aim of this study was to measure circulating SIRT1 and SIRT3 levels by enzyme-linked immune-sorbent assay in a well-characterized cohort of SSc patients (n = 80) and healthy controls (n = 71), focusing on their possible association with disease clinical features, and their potential as biomarkers reflecting SSc activity and severity. Significantly decreased serum levels of both SIRT1 and SIRT3 were found in SSc patients compared to controls. In SSc, the reduction in circulating SIRT1 and SIRT3 associated with a greater extent of cutaneous fibrosis, presence of interstitial lung disease, and worse pulmonary function. Serum SIRT1 and SIRT3 decrease also correlated with the severity of nailfold microvascular damage, with SIRT3 levels being additionally related to the occurrence of digital ulcers. The levels of these two proteins showed a direct correlation with one another in the circulation of SSc patients. Of the two SIRTs, serum SIRT3 was found to better reflect disease activity and severity in a logistic regression analysis model. Our findings suggest that serum SIRT1 and SIRT3 may represent novel potential biomarkers of increased risk for a more severe, life-threatening SSc disease course.