Magnetic skyrmions have garnered attention for their potential roles in spintronic applications, such as information carriers in computation, data storage, and nano-oscillators due to their small size, topological stability, and the requirement of small electric currents to manipulate them. Two key challenges in harnessing skyrmions are the stabilization requirement through a strong out-of-plane field, and the skyrmion Hall effect (SkHE). Here, we present a systematic model study of skyrmions in ferromagnetic/antiferromagnetic (FM/AFM) multilayer structures by employing both atomistic Monte Carlo and atomistic spin dynamics simulations. We demonstrate that skyrmions stabilized by exchange bias have superior stability to field-stabilized skyrmions due to the formation of a magnetic imprint within the AFM layer. Additionally, stacking two skyrmion hosting FM layers between two AFM layers suppresses the SkHE and enables the transport of AFM-coupled skyrmions with high velocity in the order of a few km/s. This proposed multilayer configuration could serve as a pathway to overcome existing limitations in the development of skyrmion-based devices, and the insights obtained through this study contribute significantly to the broader understanding of topological spin textures in magnetic materials.
Published by the American Physical Society
2024