Blood pressure (BP) is an important parameter for the early detection of heart disease because it is associated with symptoms of hypertension or hypotension. A single photoplethysmography (PPG) method for the classification of BP can automatically analyze BP symptoms. Users can immediately know the condition of their BP to ensure early detection. In recent years, deep learning methods have presented outstanding performance in classification applications. However, there are two main problems in deep learning classification methods: classification accuracy and time consumption during training. We attempt to address these limitations and propose a method for the classification of BP using the K-nearest neighbors (KNN) algorithm based on PPG. We collected data for 121 subjects from the PPG-BP figshare database. We divided the subjects into three classification levels, namely normotension, prehypertension, and hypertension, according to the BP levels of the Joint National Committee report. The F1 scores of these three classification trials were 100%, 100%, and 90.80%, respectively. Hence, it is validated that the proposed method can achieve improved classification accuracy without additional manual pre-processing of PPG. Our proposed method achieves higher accuracy than convolutional neural networks (deep learning), bagged tree, logistic regression, and AdaBoost tree.Information 2020, 11, 93 2 of 18 blood volume changes, which occur between the systolic and diastolic phases of the cardiac cycle. The essential frequency of the AC component depends on the heart rate and is covered onto the DC component [11]. An LED is a light source that can be used to illuminate blood vessels so minor perfusion changes can be supervised on the photodetectors [12]. Perfusion is measured as the degree at which blood is distributed to tissue [13].