DC short-circuit faults are one of the challenges for modular multilevel converter (MMC) based DC grid. It is vital for proper design of protection system to estimate the fault currents and voltages. The existing calculation methods based on RLC equivalent model of MMC have enough accuracy in estimating the branch currents but suffer from poor accuracy in estimating the node voltages. To better reflect the dynamics of MMC control during the fault, MMC is equivalent to a RLC series circuit in parallel with a variable controlled current source. This model not only considers the discharge of sub-module capacitors but also the AC active power and MMC control. Then, based on the discrete adjoint model of the equivalent MMC model and the RL series equivalent model of DC lines, the fault voltages and currents for the pre-fault and faulted DC grids could be easily obtained. From the aspect of power balance, the importance of AC active power on estimating the fault currents and voltages is discussed then. At last, based on the Zhangbei bipolar DC grid, comparisons are conducted between the simulations on PSCAD, the numerical calculation under the proposed method and the existing methods. The results show that the proposed method and the existing methods are both able to accurately estimate the fault currents within a relative error of 1%. However, compared with the error of the existing methods in calculating the fault voltages, the relative error for the proposed method is limited to less than 5% for the whole DC gird.