The standard textbook statement reads "Nuclei consist of protons and neutrons." For the major part of what we are going to discuss in the course, this simple notion is approximately true. Indeed, complex nuclei in the Universe were mostly "cooked" in stars by the processes of consecutive addition of neutrons and protons and their mutual transformations. It is relatively easy to extract these particles back from the nuclei since the separation energy per particle is typically only 6-8 MeV, less than 1% of the mass of the proton (p) or neutron (n) that is of order ∼ 1 GeV = 10 3 MeV.In many nuclei with an abnormal ratio between the proton and neutron numbers, the separation energy is even significantly lower than the value mentioned earlier. And still the statement of our first sentence has a limited range of validity. In general, the answer to the question of nuclear constituents depends on the kind of phenomena we are interested in. Various experimental studies emphasize different aspects of nuclear structure. Different patterns can be resolved at different energy scales by specifically adjusted experimental tools.The nuclear forces that keep the nucleus together are induced through exchange by mediating quanta -mesons, similar to how the electromagnetic interactions are generated by the exchange of photons. Roughly speaking, at energies small compared to the masses of particles that are capable of serving as mediators of nuclear forces, the nucleus indeed looks as an object composed of protons and neutrons. (Note that such a range of energies does not exist in the case of electromagnetic interactions carried by massless photons.) Protons and neutrons have very similar nuclear properties, and they are called by a unifying term "nucleons" (N). The mesons of the lightest family, pions ( +,0,− ), are approximately seven times lighter than the nucleons. Corresponding energies E < m c 2 ≈ 140 MeV define a domain of low-energy nuclear physics where the nucleus can be considered as being made of nonrelativistic nucleons. In this domain, mesons are virtual particles hidden in nucleon-nucleon interactions, and they rarely appear Physics of Atomic Nuclei, First Edition. Vladimir Zelevinsky and Alexander Volya.