In this work, we described the variations in the defect energy levels of four different ZnO morphologies, namely nanoribbons, nanorods, nanoparticles, and nanoshuttles. All the ZnO morphologies were grown on a seeded 4% Boron-doped p-type silicon (p-Si) wafer by using two different synthesis techniques, which are chemical bath deposition and microwave-assisted methods. The defect energy levels were analyzed by using the Deep-Level Transient Spectroscopy (DLTS) characterization method. The DLTS measurements were performed in the 123 K to 423 K temperature range. From the DLTS spectra, we found the presence of different trap-related defects in the synthesized ZnO nanostructures. We labeled all the traps related to the four different ZnO nanostructures as P1, P2, P3, P4, and P5. We discussed the presence of defects by measuring the activation energy (Ea) and capture cross-section (α). The lowest number of defect energy levels was exhibited by the ZnO nanorods at 0.27 eV, 0.18 eV, and 0.75 eV. Both the ZnO nanoribbons and nanoparticles show four traps, which have energies of 0.31 eV, 0.23 eV, 0.87 eV, and 0.44 eV and 0.27 eV, 0.22 eV, 0.88 eV, and 0.51 eV, respectively. From the DLTS spectrum of the nanoshuttles, we observe five traps with different activation energies of 0.13 eV, 0.28 eV, 0.25 eV, 0.94 eV, and 0.50 eV. The DLTS analysis revealed that the origin of the nanostructure defect energy levels can be attributed to Zinc vacancies (Vzn), Oxygen vacancies (Vo), Zinc interstitials (Zni), Oxygen interstitials (Oi), and Zinc antisites (Zno). Based on our analysis, the ZnO nanorods showed the lowest number of defect energy levels compared to the other ZnO morphologies.