“…), and garnet‐type materials (e.g., Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 , Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 , Li 7 La 3 Zr 2 O 12 , etc. ); [ 39,48 ] prospects of hydroborate electrolytes; [ 92 ] thermal/chemical expansion of CEs; [ 93 ] computational surveys of electrode/electrolyte interface; [ 94 ] electrolytes for organic material‐based energy storage; [ 95 ] NASICON‐type SEs; [ 96 ] electrolytes for Ca‐based batteries; [ 97 ] configuration of electrolytes for fast charging Li batteries; [ 98 ] high‐voltage electrolytes for aqueous energy storage; [ 99 ] modeling of ILEs; [ 100 ] electrolytes for magnesium–sulfur batteries [ 101 ] /magnesium batteries; [ 102 ] electrolytes for Li–sulfur batteries; [ 103 ] sulfide materials; [ 104,105 ] ionogels (immobilization of ILs in a solid matrix (e.g., ZrO 2 , SiO 2 , multi‐walled carbon nanotubes (MWCNTs), MOFs, COFs); [ 106 ] nanohybrid electrolytes; [ 107 ] vanadium electrolytes; [ 108 ] low‐temperature solid oxide; [ 109 ] hydrogels (e.g., polyacrylamides (PAMs), polyacrylic acid (PAA), polyvinyl alcohol (PVA), chitosan, carboxymethylcellulose, etc. ); [ 110 ] salt‐concentrated battery electrolytes; [ 111 ] and electrolytes for high‐temperature ammonia production.…”