This paper proposes a new approach to pixel-level fusion using the opposite frequency from the discrete wavelet transform with Gaussian or Difference of Gaussian. The low-frequency from discrete wavelet transform sub-band was fused with the Difference of Gaussian, while the high-frequency sub-bands were fused with Gaussian. The final fusion was reconstructed using an inverse discrete wavelet transform into one enhanced reconstructed image. These enhanced images were utilized to improve recognition performance in the face recognition system. The proposed method was tested against benchmark face datasets such as The Database of Faces (AT&T), the Extended Yale B Face Dataset, the BeautyREC Face Dataset, and the FEI Face Dataset. The results showed that our proposed method was robust and accurate against challenges such as lighting conditions, facial expressions, head pose, 180-degree rotation of the face profile, dark images, acquisition with time gap, and conditions where the person uses attributes such as glasses. The proposed method is comparable to state-of-the-art methods and generates high recognition performance (more than 99% accuracy).