Warped products play crucial roles in differential geometry, as well as in mathematical physics, especially in general relativity. In this article, first we define and study statistical solitons on Ricci-symmetric statistical warped products R × f N 2 and N 1 × f R. Second, we study statistical warped products as submanifolds of statistical manifolds. For statistical warped products statistically immersed in a statistical manifold of constant curvature, we prove Chen's inequality involving scalar curvature, the squared mean curvature, and the Laplacian of warping function (with respect to the Levi-Civita connection). At the end, we establish a relationship between the scalar curvature and the Casorati curvatures in terms of the Laplacian of the warping function for statistical warped product submanifolds in the same ambient space.