Curvature Pinching Problems for Compact Pseudo-Umbilical PMC Submanifolds in Sm(c)×R
Wang-Hua Qiu,
Xin Zhan
Abstract:Let Sm(c) denote a sphere with a positive constant curvature c and Mn(n≥3) be an n-dimensional compact pseudo-umbilical submanifold in a Riemannian product space Sm(c)×R with a nonzero parallel mean curvature vector (PMC), where R is a Euclidean line. In this paper, we prove a sequence of pinching theorems with respect to the Ricci, sectional and scalar curvatures of Mn, which allow us to generalize some classical curvature pinching results in spheres.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.