BackgroundTendon motion, which is commonly observed using ultrasound imaging, is one of the most important features used in tendinopathy diagnosis. However, speckle noise and out-of-plane issues make the tracking process difficult. Manual tracking is usually time consuming and often yields inconsistent results between users.MethodsTo automatically track tendon motion in ultrasound images, we developed a new method that combines the advantages of optical flow and multi-kernel block matching. For every pair of adjacent image frames, the optical flow is computed and used to estimate the accumulated displacement. The proposed method selects the frame interval adaptively based on this displacement. Multi-kernel block matching is then computed on the two selected frames, and, to reduce tracking errors, the detailed displacements of the frames in between are interpolated based on the optical flow results.ResultsIn the experiments, cadaver data were used to evaluate the tracking results. The mean absolute error was less than 0.05 mm. The proposed method also tracked the motion of tendons in vivo, which provides useful information for clinical diagnosis.ConclusionThe proposed method provides a new index for adaptively determining the frame interval. Compared with other methods, the proposed method yields tracking results that are significantly more accurate.Electronic supplementary materialThe online version of this article (doi:10.1186/s12938-017-0335-x) contains supplementary material, which is available to authorized users.