Background modeling has emerged as a popular foreground detection technique for various applications in video surveillance. Background modeling methods have become increasing efficient in robustly modeling the background and hence detecting moving objects in any visual scene. Although several background subtraction and foreground detection have been proposed recently, no traditional algorithm today still seem to be able to simultaneously address all the key challenges of illumination variation, dynamic camera motion, cluttered background and occlusion. This limitation can be attributed to the lack of systematic investigation concerning the role and importance of features within background modeling and foreground detection. With the availability of a rather large set of invariant features, the challenge is in determining the best combination of features that would improve accuracy and robustness in T. Bouwmans Lab. MIA,