Abstract:For any convex preorder on the set of positive roots of affine type A, we classify and construct all associated cuspidal and semicuspidal skew shapes. These combinatorial objects correspond to cuspidal and semicuspidal skew Specht modules for the Khovanov-Lauda-Rouquier algebra of affine type A. Cuspidal skew shapes are ribbons, and we show that every skew shape has a unique ordered tiling by cuspidal ribbons. This tiling data provides an upper bound, in the bilexicographic order on Kostant partitions, for lab… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.