2023
DOI: 10.21205/deufmd.2023257418
|View full text |Cite
|
Sign up to set email alerts
|

Customer Segmentation Using K-Means Clustering Algorithm and RFM Model

Gözde ASLANTAŞ,
Mustafacan GENÇGÜL,
Merve RUMELLİ
et al.

Abstract: The key points in customer segmentation are determining target customer groups and satisfying their needs. Recency-Frequency-Monetary (RFM) analysis and K-Means clustering algorithm are the popular methods for customer segmentation when analyzing customer behavior. In our study, we adapt the K-means clustering algorithm to RFM model by extracting features that represent RFM aspects of home appliances. Customers with similar RFM-oriented features are assigned to the same clusters, while customers with non-simil… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 25 publications
0
0
0
1
Order By: Relevance
“…Algoritma K-Means, sebagai metode pengelompokan, menawarkan pendekatan yang kuat untuk mengungkap pola yang mungkin tidak terlihat dalam data pelanggan (ASLANTAŞ et al, 2023). Melalui analisis frekuensi transaksi, saldo akun, jenis produk, dan berbagai indikator aktivitas perbankan, kita dapat membedakan karakteristik unik dari setiap segmen pelanggan.…”
Section: Pendahuluanunclassified
“…Algoritma K-Means, sebagai metode pengelompokan, menawarkan pendekatan yang kuat untuk mengungkap pola yang mungkin tidak terlihat dalam data pelanggan (ASLANTAŞ et al, 2023). Melalui analisis frekuensi transaksi, saldo akun, jenis produk, dan berbagai indikator aktivitas perbankan, kita dapat membedakan karakteristik unik dari setiap segmen pelanggan.…”
Section: Pendahuluanunclassified