The protein and glycoprotein content of four different neutral or acidic solvent extracts (0.5 M KCl, 10% EDTA, 0.1 N HCl, or 2% acetic acid) from the mineralized exoskeleton of a decapod crustacean, the Atlantic shore crab Carcinus maenas, were characterized by quantitative analysis of proteins, SDS-PAGE analysis, and probing with lectins on blots. The lectins used were Conconavalin A, Jacalin, soybean agglutinin, Maackia amurensis agglutinin II, and Sambucus nigra agglutinin. The results show that many proteins can be obtained from the crab cuticle without strong denaturants in the extraction medium. Many of the extracted cuticle proteins appeared to be glycosylated, bearing O-linked oligosaccharides and N-linked mannose-rich glycans. N-acetyl-galactosamine and N-acetylneuraminic acids were revealed, for the first time, as terminal residues on N-linked mannose-rich structures of crab cuticle glycoproteins. Sialylated glycoproteins might thus be involved in organic-mineral interactions in the calcified crab exoskeleton. The amount and variety of glycoproteins extracted with the acidic solvents are obviously different from those extracted with neutral solvents. HCl proved to be the best of the tested extraction solvents and a valuable alternative to EDTA.