2022
DOI: 10.1287/deca.2021.0438
|View full text |Cite
|
Sign up to set email alerts
|

Cutoff Threshold Decisions for Classification Algorithms with Risk Aversion

Abstract: Classification algorithms predict the class membership of an unknown record. Methods such as logistic regression or the naïve Bayes algorithm produce a score related to the likelihood that a record belongs to a particular class. A cutoff threshold is then defined to delineate the prediction of one class over another. This paper derives analytic results for the selection of an optimal cutoff threshold for a classification algorithm that is used to inform a two-action decision in the cases of risk aversion and r… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 33 publications
0
0
0
Order By: Relevance