Brittleness is a crucial parameter of rock mass and the key indicator in rock engineerings, such as rockburst prediction, tunnelling machine borehole drilling, and hydraulic fracturing. To solve the problem of using present brittleness indexes, the existing rock brittleness indexes were firstly summarised in this paper. Then, a brittleness index (BL), which considers the ratio of stress drop rate and stress increase rate and the peak stress, was proposed. This new index has the advantage of simplifying the acquisition of key parameters and avoiding dimensional problems, as well as taking the complete stress-strain curves into account. While applying the BL, the peak strain is used to describe the difficulty of brittle failure before the peak point, and the ratio of stress drop to strain increase can reflect the stress drop rate without dimension problem. In order to verify the applicability of BL, through the PFC2D, the microparameters and confining pressure were changed to model different types of rock numerical specimens and different stress condition. The results show that the BL can well reflect and classify the brittleness characteristics of different rock types and characterise the constraint of confining pressure on rock brittleness. Moreover, the influence of microparameter on macroparameter was studied. In order to further verify the reliability of the brittleness index (BL), this study conducted uniaxial and triaxial compression tests (30 MPa) on marble, sandstone, limestone, and granite under different confining pressure.