Tumor cells release NKG2D ligands to evade NKG2D-mediated immune surveillance. The purpose of our investigation was to explore the cellular mechanisms of release used by various members of the ULBP family. Using biochemical and cellular approaches in both transfectant systems and tumor cell lines, this paper shows that ULBP1, ULBP2, and ULBP3 are released from cells with different kinetics and by distinct mechanisms. Whereas ULBP2 is mainly shed by metalloproteases, ULBP3 is abundantly released as part of membrane vesicles known as exosomes. Interestingly, exosomal ULBP3 protein is much more potent for down-modulation of the NKG2D receptor than soluble ULBP2 protein. This is the first report showing functionally relevant differences in the biochemistry of the three members of the ULBP family and confirms that in depth study of the biochemical features of individual NKG2D ligands will be necessary to understand and manipulate the biology of these proteins for therapy.NKG2D is an activating immune receptor that can be expressed by most cytotoxic lymphocytes, including NK and CD8ϩ T cells (1). Engagement of NKG2D by its ligands leads to the activation or co-stimulation of lysis and cytokine secretion (for review, see Ref. 2). In humans, NKG2D ligands (NKG2D-L) 5 occur in two families of proteins: the polymorphic family of MHC-I-related chain A/B (MICA/B) and the multigene family of UL16-binding proteins (ULBPs, also known as RAET1A-E). In total, 10 members of this gene family have been described, of which six can be expressed as functional proteins (3). Two members of the ULBP family have a transmembrane region (ULBP4 and -5), like MICA/B, whereas the other ULBP molecules are linked to the cell membrane via glycosylphosphatidylinositol (GPI) anchors. The existence of such a large number of ligands for a single receptor is not fully understood but may reflect a differential role for different ligands in immune surveillance or an evolutionary response to selective pressures exerted by pathogens or cancer.In general, NKG2D-L are not expressed ubiquitously; instead, they are expressed in response to several types of cellular stress, such as pathogen infection (4), DNA damage (5), proteasome inhibition (6), and tumor transformation (7). For example, MICA/B are expressed in epithelial tumors, melanoma, neuroblastoma, various hematopoietic malignancies, and carcinomas; ULBPs are found in leukemia, gliomas and melanomas. An additional complication is that mRNA can be found in many cells that do not express protein suggesting post-transcriptional regulation of NKG2D-L expression (8 -10).Mice deficient in NKG2D expression show an enhanced susceptibility to the development of tumors (11). However, shedding NKG2D-L as soluble molecules allows tumor cells to evade NKG2D surveillance. Apart from reducing NKG2D-L expression on the tumor cell surface, the release of soluble molecules may also impair immune surveillance by promoting down-regulation of NKG2D (12, 13). In fact, the sustained presence in vivo of NKG2D-L down-modulates...