Finding suitable electrode materials is one of the challenges for the commercialization of a sodium ion battery due to its pulverization accompanied by high volume expansion upon sodiation. Here, copper sulfide is suggested as a superior electrode material with high capacity, high rate, and long‐term cyclability owing to its unique conversion reaction mechanism that is pulverization‐tolerant and thus induces the capacity recovery. Such a desirable consequence comes from the combined effect among formation of stable grain boundaries, semi‐coherent boundaries, and solid‐electrolyte interphase layers. The characteristics enable high cyclic stability of a copper sulfide electrode without any need of size and morphological optimization. This work provides a key finding on high‐performance conversion reaction based electrode materials for sodium ion batteries.