The modern era of green transportation based on Industry 4.0 is leading the automotive industry to focus on the electrification of all vehicles. This trend is affected by the massive advantages offered by electric vehicles (EV), such as pollution-free, economical and low-maintenance cost operation. The heart of this system is the electric motor powered by lithium-ion batteries; however, due to their many limitations, a hybrid energy storage system (HESS) consisting of batteries and ultracapacitors is currently gaining increased attention. This paper aims to review the distinct motor technologies such as brushless motors, synchronous reluctance and induction motors currently used in EVs. Additionally, through eleven selected criteria, such as regenerative braking efficiency and power density at different load ranges, the motors are classified in terms of their combined ability to operate with a HESS in order to maximize efficiency and sizing. The results show that permanent magnet and induction motors are the best options when all criteria are considered, while synchronous reluctance motor outperforms the induction motor regarding only the main factors affecting the performance of the hybrid storage system.