Clinically, rosacea occurs frequently in acne patients, which hints the existence of shared signals. However, the connection between the pathophysiology of rosacea and acne are not yet fully understood. This study aims to unveil molecular mechanism in the pathogenesis of rosacea and acne. We identified differentially expressed genes (DEGs) by limma and weighted gene co-expression network analysis and screened hub genes by constructing a protein-protein interaction network. The hub genes were validated in different datasets. Then, we performed a correlation analysis between the hub genes and the pathways. Finally, we predicted and validated transcription factors of hub genes, performed the immune cell infiltration analysis using CIBERSORT, and calculated the correlation between hub genes and immune cells. A total of 169 common DEGs were identified. which were mainly enriched in immune-related pathways. Finally, hub genes were identified as IL1B, PTPRC, CXCL8, MMP9, CCL4, CXCL10, CD163, CCR5, CXCR4, and TLR8. 9 transcription factors that regulated the expression of hub genes were identified. The infiltration of γδT cells was significantly increased in rosacea and acne lesions and positively linked with almost all hub genes. These identified hub genes and immune cells may play a crucial role in the development of rosacea and acne.