BackgroundSubarachnoid hemorrhage (SAH) is a cerebrovascular disease associated with high morbidity and mortality. CXCR4 provides a neuroprotective effect, which can alleviate brain injury and inflammation induced by stroke. The purpose of this study was to evaluate the anti-inflammatory effects and mechanisms of CXCR4 after SAH. Methods: SAH was induced via endovascular perforation. 185 male Sprague-Dawley rats were used. Recombinant human cysteine-X-cysteine chemokine ligand 12 (rh-CXCL-12) was administered intranasally at 1 h after SAH induction. To investigate the underlying mechanism, the inhibitors of CXCR4 and P13K, AMD3100 and LY294002, respectively, were administered intraperitoneally at 1 h before SAH. The short- and long-term neurobehavior were assessed, followed by performing western blot and immunofluorescence staining. ResultsWestern blotting suggested that the expressions of endogenous CXCL-12 and CXCR4 were increased, and peaked at 24 h following SAH. Immunofluorescence staining showed that CXCR4 was expressed on microglia. Rh-CXCL-12 treatment reduced the number of M1 macrophages and improved the short- and long-term neurological deficits after SAH. Meanwhile, rh-CXCL-12 treatment increased the levels of CXCL-12, CXCR4, PI3K, and p-Akt, and reduced the levels of IL-1β, IL-6, and TNF-α. Moreover, the administration of AMD3100 and LY294002 abolished the post-SAH neurobehavioral and neuroinflammatory improvements of CXCL-12 and its regulation of PI3K and p-Akt protein levels.ConclusionsThe CXCR4/PI3K/Akt signaling pathway may be involved in CXCL-12-mediated reduction of post-SAH neuroinflammation. Early administration of CXCL-12 may be a preventive and therapeutic strategy against delayed brain injury after SAH.