Multiple sclerosis is a neurodegenerative disease characterized by episodes of autoimmune attack of oligodendrocytes leading to demyelination and progressive functional deficits. Because many patients exhibit functional recovery in between demyelinating episodes, understanding mechanisms responsible for repair of damaged myelin is critical for developing therapies that promote remyelination and prevent disease progression. The chemokine CXCL12 is a developmental molecule known to orchestrate the migration, proliferation, and differentiation of neuronal precursor cells within the developing CNS. Although studies suggest a role for CXCL12 in oligodendroglia ontogeny in vitro, no studies have investigated the role of CXCL12 in remyelination in vivo in the adult CNS. Using an experimental murine model of demyelination mediated by the copper chelator cuprizone, we evaluated the expression of CXCL12 and its receptor, CXCR4, within the demyelinating and remyelinating corpus callosum (CC). CXCL12 was significantly up-regulated within activated astrocytes and microglia in the CC during demyelination, as were numbers of CXCR4+ NG2+ oligodendrocyte precursor cells (OPCs). Loss of CXCR4 signaling via either pharmacological blockade or in vivo RNA silencing led to decreased OPCs maturation and failure to remyelinate. These data indicate that CXCR4 activation, by promoting the differentiation of OPCs into oligodendrocytes, is critical for remyelination of the injured adult CNS.M ultiple sclerosis (MS), a progressive, neurodegenerative disease of the CNS, occurs most often in a relapsing/remitting form, in which a period of demyelination is followed by a period of functional recovery (1). The recovery stage involves remyelination via the migration and maturation of oligodendrocyte precursor cells (OPCs) (2). However, as the disease progresses, remyelination fails with continuous loss of function (3). Possible explanations for remyelination failure of intact axons include defects in OPC recruitment to the site of demyelination or in OPC differentiation into myelinating oligodendrocytes. Although studies indicate that both aspects of OPC biology are altered in MS (4, 5), the molecular mechanisms that orchestrate these processes within the adult CNS are incompletely understood.Studies in mice indicate that neural precursors that give rise to cells of oligodendrocytes lineage can be identified within the ventral half of the ventricular zones of all CNS regions by embryonic days 12-14 (E12-E14) via their expression of NG2 chondroitin sulfate proteoglycan (6). In the final stage of oligodendrocyte differentiation, which occurs primarily during the postnatal period (P4-P12), OPCs begin to express mature markers of oligodendrocytes including 2′3′-cyclic nucleotide phosphohydrolase (CNPase), myelin basic protein (MBP), proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG). Similar events occur during remyelination; NG2+ OPCs proliferate within subventricular zones, migrate to areas of demyelination, and differentiate ...