In the last decade, genetic and pharmacological approaches have been used to explore ethylene biosynthesis and perception in order to study the role of ethylene and ethylene/auxin interaction in root architecture development. However, recent findings with pharmacological approaches highlight the non-specificity of commonly used inhibitors. This suggests that caution is required for interpreting these studies and that the use of pharmacological agents is a 'double-edged' tool. On one hand, non-specific effects make interpretation difficult unless other experiments, such as with different mutants or with multiple diversely acting chemicals, are conducted. On the other hand, the non-specificity of inhibitors opens up the possibility of uncovering some ligands or modulators of new receptors such as plant glutamate-like receptors and importance of some metabolic hubs in carbon and nitrogen metabolism such as the pyridoxal phosphate biosynthesis involved in the regulation of the root morphogenetic programme. Identification of such targets is a critical issue to improve the efficiency of absorption of macronutrients in relation to root the morphogenetic programme.