BackgroundDendrobium mixture (DMix) is an effective treatment for diabetic nephropathy (DN), but the underlying molecular mechanism remains unclear. In this study, we investigated whether DMix regulates the transforming growth factor-β1 (TGF-β1)/Smads signal transduction pathway. MethodsTwenty-four db/db mice were randomly divided into three groups: the model, DMix, and gliquidone groups, while eight db/m mice were selected as the normal control group. The drug was administered by continuous gavage for 8 weeks. Body weight (BW), kidney weight (KW), kidney index, fasting blood glucose (FBG), blood lipid, 24-hour urinary albumin excretion rate, blood urea nitrogen, and serum creatinine levels were measured. Pathological changes in the renal tissue were observed using a light microscope. Real-time quantitative PCR and immunohistochemical staining were used to detect mRNA expression of TGF-β1 and alpha-smooth muscle actin (α-SMA) genes and proteins, respectively, in renal tissues. TGF-β1, Smad2, p-Smad2, Smad3, p-Smad3, and α-SMA expression levels were measured using western blotting. ResultsDMix significantly reduced FBG level, BW, KW, and blood lipid level, and improved renal function in db/db mice. Histopathology showed that DMix alleviated glomerular mesangial cell proliferation and renal interstitial fibrosis in db/db mice. Additionally, DMix reduced protein and mRNA expression of TGF-β1 and α-SMA, and inhibited Smad2 and Smad3 phosphorylation. ConclusionsThe findings suggest that DMix may inhibit renal fibrosis and delay the progression of DN by regulating the TGF-β1/Smads signaling pathway. Key words: Diabetic nephropathy, Dendrobium mixture, TGF-β1/Smads signaling pathway