We have shown that a diet containing freeze-dried black raspberries (BRB) inhibits the development of chemically-induced cancer in the rat esophagus. To provide insights into possible mechanisms by which BRB inhibit esophageal carcinogenesis, we evaluated an ethanol (EtOH) extract of BRB, and two component anthocyanins (cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside) in BRB, for their effects on growth, apoptosis and gene expression in rat esophageal epithelial cell lines. The EtOH extract and both anthocyanins selectively caused significant growth inhibition and induction of apoptosis in a highly tumorigenic cell line (RE-149 DHD) but not in a weakly tumorigenic line (RE-149). The uptake of anthocyanins from the EtOH extract into RE-149 DHD cells far exceeded their uptake into RE-149 cells, which may have accounted for the selective effects of the extract on growth and apoptosis of RE-149 DHD cells. The growth inhibitory and pro-apoptotic effects were enhanced by the daily addition of the EtOH extract and the anthocyanins to the medium. Interestingly, the EtOH extract did not alter cyclooxygenase-2 (COX-2) and nitric oxide synthase (i-NOS) expression in RE-149 DHD cells whereas, both anthocyanins down-regulated the expressions of these genes. This differential effect may have been related to the relative amounts of anthocyanins in the extract versus when they were added individually to the medium. We conclude that the selective effects of the EtOH extract on growth and apoptosis of highly tumorigenic rat esophageal epithelial cells in vitro may be due to preferential uptake and retention of its component anthocyanins, and this may also be responsible for the greater inhibitory effects of freeze-dried whole berries on tumor cells in vivo.