A B S T R A C T Studies from our laboratory have shown that the metabolic clearance rate of carboxy terminal immunoreactive parathyroid hormone (i-PTH) can be accounted for by extraction ofi-PTH by liver and kidney. In contrast, there was no demonstrable hepatic uptake of the synthetic amino terminal bovine PTH fragment and the kidney accounted for only 45% of the metabolic clearance rate of amino terminal i-PTH. This suggested that another major site, presumably bone, played a role in the metabolism of syn b-PTH 1-34. Extraction of i-PTH by isolated perfused bone was studied during infusion of purified bovine PTH (b-PTH) 1-84 or syn b-PTH 1-34. In five studies during infusion of syn b-PTH 1-34 the arteriovenous difference for i-PTH across bone was 36%. In contrast, no significant uptake of carboxy terminal i-PTH was observed in nine studies during infusion of b-PTH 1-84. In addition, when H202-oxidized (biologically inactive) syn b-PTH 1-34 was used no arteriovenous difference was observed. These findings correlated with the ability of these PTH preparations to stimulate cyclic AMP production by the perfused bone. Syn b-PTH 1-34 increased cyclic AMP production at perfusate PTH concentrations of 1-5 ng/ml, whereas b-PTH 1-84 evoked only a minimal response at concentrations of 10-20 ng/ml. We conclude that bone is a major site of metabolism of the amino terminal PTH fragment, syn b-PTH 1-34. In addition, these data suggest that cleavage of the intact hormone, with the production ofamino terminal PTH fragments by peripheral