Cyclic AMP response element-binding protein (CREB) is a widely expressed transcription factor whose role in neuronal protection is now well established. Here we report that CREB is present in the mitochondrial matrix of neurons and that it binds directly to cyclic AMP response elements (CREs) found within the mitochondrial genome. Disruption of CREB activity in the mitochondria decreases the expression of a subset of mitochondrial genes, including the ND5 subunit of complex I, down-regulates complex I-dependent mitochondrial respiration, and increases susceptibility to 3-nitropropionic acid, a mitochondrial toxin that induces a clinical and pathological phenotype similar to Huntington disease. These results demonstrate that regulation of mitochondrial gene expression by mitochondrial CREB, in part, underlies the protective effects of CREB and raise the possibility that decreased mitochondrial CREB activity contributes to the mitochondrial dysfunction and neuronal loss associated with neurodegenerative disorders.The cAMP response element-binding protein (CREB) 3 is a transcription factor known to mediate stimulus-dependent expression of genes critical for the plasticity, growth, and survival of neurons (1). A variety of stimuli alter levels of intracellular second messengers in neurons, such as cAMP and calcium, and activate CREB by leading to phosphorylation at its critical regulatory site, serine 133 (2, 3). Overexpression of constitutively active CREB prevents cell death induced by growth factor deprivation, while expression of a dominant negative form of CREB leads to apoptosis in both sympathetic neurons and cerebellar granule cells (4,5). A recent report that CREB is present in the mitochondria raises the possibility that CREB could mediate mitochondrial gene expression (6). Nonetheless, the function of mitochondrial CREB is not known. The present study confirms the presence of CREB in the mitochondria and addresses the role of CREB in mitochondrial gene expression and neuronal survival. The results raise the possibility of a novel mechanism for CREB dysfunction in the pathogenesis of neurodegenerative disorders.
MATERIALS AND METHODSIsolation of Mitochondria-Mitochondria were isolated from primary cultured cortical neurons and adult rat brains by sucrose density gradient centrifugation (6).Confocal Microscopy-Indirect labeling methods were used to determine the levels of CREB, phosphorylated CREB (pCREB), and neurofilament (200 kDa) in cortical neuronal cultures and human and rat brain tissues as described previously (7).Immunogold Labeling and Electron Microscopy-Frozen samples were sectioned at Ϫ120°C, and the sections were transferred to Formvar/carboncoated copper grids. Samples were incubated with antibody in 1% bovine serum albumin for 30 min. After rinsing the samples four times with PBS, protein A-gold (10 nm) in 1% bovine serum albumin was added for 20 min. Contrasting stain procedures were carried out using 2% methyl cellulose: 3% uranyl acetate (9:1) for 10 min on ice. To dry the samples, grid...