SummaryA novel proposal for an assembled bolted joint between a precast reinforced concrete beam and column is presented in this paper. In order to evaluate the behavior of the joint, a comprehensive experiment was carried out on a full‐scale precast concrete beam‐column joint based on bolted connection subjected to pseudo‐static loading. The experiment aims to investigate the failure mode, load carrying capacity, and energy dissipation characteristics of the joint. To further understand the performance of the joint, a finite element model was developed using ABAQUS. The difference in failure mode and ultimate bearing capacity between the bolted joints and cast‐in‐situ joints were analyzed in conjunction with the experimental results. Moreover, the impact of various parameters on the performance of the bolted joints was quantified. The characteristics of the bolted joints, such as the span‐depth ratio, reinforcement ratio of the beam, the stirrup ratio at the beam‐column junction, T‐end length, and the bolt strength grade, were meticulously analyzed through an examination of bearing capacity curve, stiffness degradation patterns, and energy dissipation capability. The results show that, in comparison with the traditional cast‐in‐situ joints, the damage failure extent exhibited by the bolted joints is notably smaller, thereby rendering it more advantageous for seismic restoration and replacement. Furthermore, the span‐depth ratio, reinforcement ratio of the beam, and the stirrup ratio have a greater influence on the seismic performance of bolted joints than the T‐end length and bolt strength grade.